%0 Journal Article %T Linear estimate for the number of zeros of Abelian integrals %A S. G. Malev %A D. Novikov %J Mathematics %D 2009 %I arXiv %X We prove a linear in $\deg\omega$ upper bound on the number of real zeros of the Abelian integral $I(t)=\int_{\delta(t)}\omega$, where $\delta(t)\subset\R^2$ is the real oval $x^2y(1-x-y)=t$ and $\omega$ is a one-form with polynomial coefficients. %U http://arxiv.org/abs/0903.5056v1