%0 Journal Article %T Extinction of solutions of semilinear higher order parabolic equations with degenerate absorption potential %A Yves Belaud %A Andrey Shishkov %J Mathematics %D 2009 %I arXiv %X We study the first vanishing time for solutions of the Cauchy-Dirichlet problem to the semilinear $2m$-order ($m \geq 1$) parabolic equation $u_t+Lu+a(x) |u|^{q-1}u=0$, $02m$ and $\displaystyle \int_0^1 s^{-1} \text{meas} \{x \in \Omega : |a(x)| \leq s \}^\frac{2m}{N} ds < + \infty$, then the solution $u$ vanishes in a finite time. When $N=2m$, the condition becomes $\displaystyle \int_0^1 s^{-1} (\text{meas} \{x \in \Omega : |a(x)| \leq s \}) (-\ln \text{meas} \{x \in \Omega : |a(x)| \leq s \}) ds < + \infty$. %U http://arxiv.org/abs/0903.4351v1