%0 Journal Article %T On quasi-thin association schemes %A M. Muzychuk %A I. Ponomarenko %J Mathematics %D 2010 %I arXiv %X An association scheme is called quasi-thin if the valency of each its basic relation is one or two. A quasi-thin scheme is Kleinian if the thin residue of it forms a Klein group with respect to the relation product. It is proved that any Kleinian scheme arises from near-pencil on~$3$ points, or affine or projective plane of order~$2$. The main result is that any non-Kleinian quasi-thin scheme a) is the two-orbit scheme of a suitable permutation group, and b) is characterized up to isomorphism by its intersection number array. An infinite family of Kleinian quasi-thin schemes for which neither a) nor b) holds is also constructed. %U http://arxiv.org/abs/1010.4450v1