%0 Journal Article %T Periodic Jacobi operator with finitely supported perturbations %A Alexei Iantchenko %A Evgeny Korotyaev %J Mathematics %D 2010 %I arXiv %R 10.1016/j.jmaa.2011.11.016 %X We describe the spectral properties of the Jacobi operator $(Hy)_n= a_{n-1} y_{n-1}+a_{n}y_{n+1}+b_ny_n,$ $n\in\Z,$ with $a_n=a_n^0+ u_n,$ $b_n= b_n^0+ v_n,$ where sequences $a_n^0>0,$ $b_n^0\in\R$ are periodic with period $q$, and sequences $ u_n,$ $ v_n$ have compact support. In the case $ u_n\equiv 0$ we obtain the asymptotics of the spectrum in the limit of small perturbations $ v_n.$ %U http://arxiv.org/abs/1006.1538v1