%0 Journal Article %T Application of the Hori Method in the Theory of Nonlinear Oscillations %A Sandro da Silva Fernandes %J Mathematical Problems in Engineering %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/239357 %X Some remarks on the application of the Hori method in the theory of nonlinear oscillations are presented. Two simplified algorithms for determining the generating function and the new system of differential equations are derived from a general algorithm proposed by Sessin. The vector functions which define the generating function and the new system of differential equations are not uniquely determined, since the algorithms involve arbitrary functions of the constants of integration of the general solution of the new undisturbed system. Different choices of these arbitrary functions can be made in order to simplify the new system of differential equations and define appropriate near-identity transformations. These simplified algorithms are applied in determining second-order asymptotic solutions of two well-known equations in the theory of nonlinear oscillations: van der Pol equation and Duffing equation. %U http://www.hindawi.com/journals/mpe/2012/239357/