%0 Journal Article %T The full group C*-algebra of the modular group is primitive %A Erik Bedos %A Tron Omland %J Mathematics %D 2009 %I arXiv %X We show that the full group C$^*$-algebra of $PSL(n, \Z)$ is primitive when $n=2$, and not primitive when $n\geq 3$. Moreover, we show that there exists an uncountable family of pairwise inequivalent, faithful irreducible representations of $C^*(PSL(2,\Z))$. %U http://arxiv.org/abs/0906.4916v2