%0 Journal Article %T A note on the field isomorphism problem of X^3+sX+s and related cubic Thue equations %A Akinari Hoshi %A Katsuya Miyake %J Mathematics %D 2009 %I arXiv %X We study the field isomorphism problem of cubic generic polynomial $X^3+sX+s$ over the field of rational numbers with the specialization of the parameter $s$ to nonzero rational integers $m$ via primitive solutions to the family of cubic Thue equations $x^3-2mx^2y-9mxy^2-m(2m+27)y^3=\lambda$ where $\lambda^2$ is a divisor of $m^3(4m+27)^5$. %U http://arxiv.org/abs/0901.4831v3