%0 Journal Article %T Mean Staircase of the Riemann Zeros: a comment on the Lambert W function and an algebraic aspect %A Davide a Marca %A Stefano Beltraminelli %A Danilo Merlini %J Mathematics %D 2009 %I arXiv %X In this note we discuss explicitly the structure of two simple set of zeros which are associated with the mean staircase emerging from the zeta function and we specify a solution using the Lambert W function. The argument of it may then be set equal to a special $N \times N$ classical matrix (for every $N$) related to the Hamiltonian of the Mehta-Dyson model. In this way we specify a function of an hermitean operator whose eigenvalues are the "trivial zeros" on the critical line. The first set of trivial zeros is defined by the relations $\tmop{Im} (\zeta ({1/2} + i \cdot t)) = 0 \wedge \tmop{Re} (\zeta ({1/2} + i \cdot t)) \neq 0$ and viceversa for the second set. (To distinguish from the usual trivial zeros $s = \rho + i \cdot t = - 2 n$, $n \geqslant 1$ integer) %U http://arxiv.org/abs/0901.3377v1