%0 Journal Article %T Generalizations of Chung-Feller Theorem %A Jun Ma %A Yeong-Nan Yeh %J Mathematics %D 2008 %I arXiv %X The classical Chung-Feller theorem [2] tells us that the number of Dyck paths of length $n$ with flaws $m$ is the $n$-th Catalan number and independent on $m$. L. Shapiro [7] found the Chung-Feller properties for the Motzkin paths. In this paper, we find the connections between these two Chung-Feller theorems. We focus on the weighted versions of three classes of lattice paths and give the generalizations of the above two theorems. We prove the Chung-Feller theorems of Dyck type for these three classes of lattice paths and the Chung-Feller theorems of Motzkin type for two of these three classes. From the obtained results, we find an interesting fact that many lattice paths have the Chung-Feller properties of both Dyck type and Motzkin type. %U http://arxiv.org/abs/0812.2978v1