%0 Journal Article %T Quasi-elementary H-Azumaya algebras arising from generalized (anti) Yetter-Drinfeld modules %A Florin Panaite %A Freddy Van Oystaeyen %J Mathematics %D 2008 %I arXiv %X Let H be a Hopf algebra with bijective antipode, let \alpha, \beta be two Hopf algebra automorphisms of H and M a finite dimensional (\alpha, \beta )-Yetter-Drinfeld module. We prove that End(M) endowed with certain structures becomes an H-Azumaya algebra, and the set of H-Azumaya algebras of this type is a subgroup of BQ(k, H), the Brauer group of H. %U http://arxiv.org/abs/0805.3437v1