%0 Journal Article %T Integral point sets over $\mathbb{Z}_n^m$ %A Axel Kohnert %A Sascha Kurz %J Mathematics %D 2008 %I arXiv %X There are many papers studying properties of point sets in the Euclidean space $\mathbb{E}^m$ or on integer grids $\mathbb{Z}^m$, with pairwise integral or rational distances. In this article we consider the distances or coordinates of the point sets which instead of being integers are elements of $\mathbb{Z} / \mathbb{Z}n$, and study the properties of the resulting combinatorial structures. %U http://arxiv.org/abs/0804.1299v1