%0 Journal Article %T Conditions implying the uniqueness of the weak$^*$-topology on certain group algebras %A Matthew Daws %A Hung Le Pham %A Stuart White %J Mathematics %D 2008 %I arXiv %X We investigate possible preduals of the measure algebra $M(G)$ of a locally compact group and the Fourier algebra $A(G)$ of a separable compact group. Both of these algebras are canonically dual spaces and the canonical preduals make the multiplication separately weak$^*$-continuous so that these algebras are dual Banach algebras. In this paper we find additional conditions under which the preduals $C_0(G)$ of $M(G)$ and $C^*(G)$ of $A(G)$ are uniquely determined. In both cases we consider a natural coassociative multiplication and show that the canonical predual gives rise to the unique weak$^*$-topology making both the multiplication separately weak$^*$-continuous and the coassociative multiplication weak$^*$-continuous. In particular, dual cohomological properties of these algebras are well defined with this additional structure. %U http://arxiv.org/abs/0804.3764v1