%0 Journal Article %T A family of 2-graphs arising from two-dimensional subshifts %A David Pask %A Iain Raeburn %A Natasha A. Weaver %J Mathematics %D 2008 %I arXiv %X Higher-rank graphs (or $k$-graphs) were introduced by Kumjian and Pask to provide combinatorial models for the higher-rank Cuntz-Krieger $C^*$-algebras of Robertson and Steger. Here we consider a family of finite 2-graphs whose path spaces are dynamical systems of algebraic origin, as studied by Schmidt and others. We analyse the $C^*$-algebras of these 2-graphs, find criteria under which they are simple and purely infinite, and compute their $K$-theory. We find examples whose $C^*$-algebras satisfy the hypotheses of the classification theorem of Kirchberg and Phillips, but are not isomorphic to the $C^*$-algebras of ordinary directed graphs. %U http://arxiv.org/abs/0804.3447v1