%0 Journal Article %T Dimension expanders %A A. Lubotzky %A E. Zelmanov %J Mathematics %D 2008 %I arXiv %X We show that there exists $k \in \bbn$ and $0 < \e \in\bbr$ such that for every field $F$ of characteristic zero and for every $n \in \bbn$, there exists explicitly given linear transformations $T_1,..., T_k: F^n \to F^n$ satisfying the following: For every subspace $W$ of $F^n$ of dimension less or equal $\frac n2$, $ \dim(W+\suml^k_{i=1} T_iW) \ge (1+\e) \dim W$. This answers a question of Avi Wigderson [W]. The case of fields of positive characteristic (and in particular finite fields) is left open. %U http://arxiv.org/abs/0804.0481v2