%0 Journal Article %T Regularity and the Cesaro-Nevai class %A Barry Simon %J Mathematics %D 2007 %I arXiv %X We consider OPRL and OPUC with measures regular in the sense of Ullman-Stahl-Totik and prove consequences on the Jacobi parameters or Verblunsky coefficients. For example, regularity on $[-2,2]$ implies $\lim_{N\to\infty} N^{-1} [\sum_{n=1}^N (a_n-1)^2 + b_n^2] =0$. %U http://arxiv.org/abs/0711.2695v1