%0 Journal Article %T The Fundamental k-Form and Global Relations %A Anthony C. L. Ashton %J Mathematics %D 2007 %I arXiv %R 10.3842/SIGMA.2008.033 %X In [Proc. Roy. Soc. London Ser. A 453 (1997), no. 1962, 1411-1443] A.S. Fokas introduced a novel method for solving a large class of boundary value problems associated with evolution equations. This approach relies on the construction of a so-called global relation: an integral expression that couples initial and boundary data. The global relation can be found by constructing a differential form dependent on some spectral parameter, that is closed on the condition that a given partial differential equation is satisfied. Such a differential form is said to be fundamental [Quart. J. Mech. Appl. Math. 55 (2002), 457-479]. We give an algorithmic approach in constructing a fundamental k-form associated with a given boundary value problem, and address issues of uniqueness. Also, we extend a result of Fokas and Zyskin to give an integral representation to the solution of a class of boundary value problems, in an arbitrary number of dimensions. We present an extended example using these results in which we construct a global relation for the linearised Navier-Stokes equations. %U http://arxiv.org/abs/0711.4707v3