%0 Journal Article %T A counterexample to the existence of a Poisson structure on a twisted group algebra %A Eliana Zoque %J Mathematics %D 2006 %I arXiv %X Crawley-Boevey introduced the definition of a noncommutative Poisson structure on an associative algebra A that extends the notion of the usual Poisson bracket. Let V be a symplectic manifold and G be a finite group of symplectimorphisms of V. Consider the twisted group algebra A=C[V]#G. We produce a counterexample to prove that it is not always possible to define a noncommutative poisson structure on C[V]#G that extends the Poisson bracket on C[V]^G. %U http://arxiv.org/abs/math/0608099v1