%0 Journal Article %T Game-theoretic versions of strong law of large numbers for unbounded variables %A Masayuki Kumon %A Akimichi Takemura %A Kei Takeuchi %J Mathematics %D 2006 %I arXiv %R 10.1080/17442500701323023 %X We consider strong law of large numbers (SLLN) in the framework of game-theoretic probability of Shafer and Vovk (2001). We prove several versions of SLLN for the case that Reality's moves are unbounded. Our game-theoretic versions of SLLN largely correspond to standard measure-theoretic results. However game-theoretic proofs are different from measure-theoretic ones in the explicit consideration of various hedges. In measure-theoretic proofs existence of moments are assumed, whereas in our game-theoretic proofs we assume availability of various hedges to Skeptic for finite prices. %U http://arxiv.org/abs/math/0603184v1