%0 Journal Article %T General classical and quantum-mechanical description of magnetic resonance %A Alexander J. Silenko %J Physics %D 2015 %I arXiv %X A general theoretical description of the magnetic resonance is given. General formulas describing a behavior of all components of the polarization vector at the magnetic resonance are derived in the case of an arbitrary initial polarization. The equations obtained are exact on condition that the nonresonance rotating field is neglected. The spin dynamics is also calculated at frequencies far from resonance without neglecting the above-mentioned field. A quantum-mechanical analysis of the spin evolution at the magnetic resonance is fulfilled and the full agreement between the classical and quantum-mechanical approaches is proven. Distinguishing features of magnetic and quasimagnetic resonances for nuclei and particles moving in accelerators and storage rings which include resonances caused by the electric dipole moment are considered. %U http://arxiv.org/abs/1508.00742v1