%0 Journal Article %T Spin structure of harmonically trapped one-dimensional atoms with spin-orbit coupling %A Q. Guan %A D. Blume %J Physics %D 2015 %I arXiv %R 10.1103/PhysRevA.92.023641 %X We introduce a theoretical approach to determine the spin structure of harmonically trapped atoms with two-body zero-range interactions subject to an equal mixture of Rashba and Dresselhaus spin-orbit coupling created through Raman coupling of atomic hyperfine states. The spin structure of bosonic and fermionic two-particle systems with finite and infinite two-body interaction strength $g$ is calculated. Taking advantage of the fact that the $N$-boson and $N$-fermion systems with infinitely large coupling strength $g$ are analytically solvable for vanishing spin-orbit coupling strength $k_{so}$ and vanishing Raman coupling strength $\Omega$, we develop an effective spin model that is accurate to second-order in $\Omega$ for any $k_{so}$ and infinite $g$. The three- and four-particle systems are considered explicitly. It is shown that the effective spin Hamiltonian, which contains a Heisenberg exchange term and an anisotropic Dzyaloshinskii-Moriya exchange term, describes the transitions that these systems undergo with the change of $k_{so}$ as a competition between independent spin dynamics and nearest-neighbor spin interactions. %U http://arxiv.org/abs/1508.00932v1