%0 Journal Article %T Structural Properties of Self-Attracting Walks %A A. Ordemann %A E. Tomer %A G. Berkolaiko %A S. Havlin %A A. Bunde %J Physics %D 2001 %I arXiv %R 10.1103/PhysRevE.64.046117 %X Self-attracting walks (SATW) with attractive interaction u > 0 display a swelling-collapse transition at a critical u_{\mathrm{c}} for dimensions d >= 2, analogous to the \Theta transition of polymers. We are interested in the structure of the clusters generated by SATW below u_{\mathrm{c}} (swollen walk), above u_{\mathrm{c}} (collapsed walk), and at u_{\mathrm{c}}, which can be characterized by the fractal dimensions of the clusters d_{\mathrm{f}} and their interface d_{\mathrm{I}}. Using scaling arguments and Monte Carlo simulations, we find that for uu_{\mathrm{c}}, the clusters are compact, i.e. d_{\mathrm{f}}=d and d_{\mathrm{I}}=d-1. At u_{\mathrm{c}}, the SATW is in a new universality class. The clusters are compact in both d=2 and d=3, but their interface is fractal: d_{\mathrm{I}}=1.50\pm0.01 and 2.73\pm0.03 in d=2 and d=3, respectively. In d=1, where the walk is collapsed for all u and no swelling-collapse transition exists, we derive analytical expressions for the average number of visited sites and the mean time to visit S sites. %U http://arxiv.org/abs/cond-mat/0102409v1