%0 Journal Article %T Triplet pair amplitude in a trapped $s$-wave superfluid Fermi gas with broken spin rotation symmetry %A Yuki Endo %A Daisuke Inotani %A Ryo Hanai %A Yoji Ohashi %J Physics %D 2015 %I arXiv %R 10.1103/PhysRevA.92.023610 %X We investigate the possibility that the broken spatial inversion symmetry by a trap potential induces a spin-triplet Cooper-pair amplitude in an $s$-wave superfluid Fermi gas. Being based on symmetry considerations, we clarify that this phenomenon may occur, when a spin rotation symmetry of the system is also broken. We also numerically confirm that a triplet pair amplitude is really induced under this condition, using a simple model. Our results imply that this phenomenon is already present in a trapped $s$-wave superfluid Fermi gas with spin imbalance. As an interesting application of this phenomenon, we point out that one may produce a $p$-wave superfluid Fermi gas, by suddenly changing the $s$-wave pairing interaction to a $p$-wave one by using the Feshbach resonance technique. Since a Cooper pair is usually classified into the spin-singlet (and even-parity) state and the spin-triplet (and odd-parity) state, our results would be useful in considering how to mix them with each other in a superfluid Fermi gas. Such admixture has recently attracted much attention in the field of non-centrosymmetric superconductivity, so that our results would also contribute to the further development of this research field, on the viewpoint of cold Fermi gas physics. %U http://arxiv.org/abs/1505.05640v1