%0 Journal Article %T Quantized magneto-thermoelectric transport in low-dimensional junctions %A S. E. Shafranjuk %J Physics %D 2014 %I arXiv %R 10.1209/0295-5075/109/68003 %X Quantization of the magneto-thermoelectric transport is studied when an external d.c. magnetic field is applied to the C/N-knot formed as crossing between a narrow stripe of conducting atomic monolayer C on the one hand and metal stripe N on the other hand. The temperature gradient in C is created by injecting the non-equilibrium electrons, holes and phonons from the heater H thereby directing them toward the C/N-knot. A non-linear coupling between electron states of the C/N-knot counter electrodes causes splitting of the heat flow into several fractions owing to the Lorentz force acting in the C/N-knot vicinity, thereby inducing the magneto-thermoelectric current in N whereas the phonons pass and propagate along C further ahead. The heat flow along C generates a transversal electric current in N showing a series of maximums when dimensions of the Landau orbits and the C/N-knot match each other. It allows observing the interplay between the quantum Hall effect and the spatial quantization. %U http://arxiv.org/abs/1411.3996v1