%0 Journal Article %T Single electron detection and spectroscopy via relativistic cyclotron radiation %A D. M. Asner %A R. F. Bradley %A L. de Viveiros %A P. J. Doe %A J. L. Fernandes %A M. Fertl %A E. C. Finn %A J. A. Formaggio %A D. Furse %A A. M. Jones %A J. N. Kofron %A B. H. LaRoque %A M. Leber %A E. L. McBride %A M. L. Miller %A P. Mohanmurthy %A B. Monreal %A N. S. Oblath %A R. G. H. Robertson %A L. J Rosenberg %A G. Rybka %A D. Rysewyk %A M. G. Sternberg %A J. R. Tedeschi %A T. Thummler %A B. A. VanDevender %A N. L. Woods %J Physics %D 2014 %I arXiv %R 10.1103/PhysRevLett.114.162501 %X It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spec- trometer. We observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta elec- tron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta spectroscopy for future neutrino mass experiments. %U http://arxiv.org/abs/1408.5362v2