%0 Journal Article %T External stability for Spherically Symmetric Solutions in Lorentz Breaking Massive Gravity %A Andrea Addazi %A Salvatore Capozziello %J Physics %D 2014 %I arXiv %R 10.1007/s10773-014-2387-z %X We discuss spherically symmetric solutions for point-like sources in Lorentz-breaking massive gravity theories. This analysis is valid for St\"uckelberg's effective field theory formulation, for Lorentz Breaking Massive Bigravity and general extensions of gravity leading to an extra term $-Sr^{\gamma}$ added to the Newtonian potential. The approach consists in analyzing the stability of the geodesic equations, at the first order (deviation equation). The main result is a strong constrain in the space of parameters of the theories. This motivates higher order analysis of geodesic perturbations in order to understand if a class of spherically symmetric Lorentz-breaking massive gravity solutions, for self-gravitating systems, exists. Stable and phenomenologically acceptable solutions are discussed in the no-trivial case $S\neq 0$. %U http://arxiv.org/abs/1407.4840v3