%0 Journal Article %T Loopless non-trapping invasion percolation model for fracking %A J. Quinn Norris %A Donald L. Turcotte %A John B. Rundle %J Physics %D 2014 %I arXiv %R 10.1103/PhysRevE.89.022119 %X Recent developments in hydraulic fracturing (fracking) have enabled the recovery of large quantities of natural gas and oil from old, low permeability shales. These developments include a change from low-volume, high-viscosity fluid injection to high-volume, low-viscosity injection. The injected fluid introduces distributed damage that provides fracture permeability for the extraction of the gas and oil. In order to model this process, we utilize a loopless non-trapping invasion percolation previously introduced to model optimal polymers in a strongly disordered medium, and for determining minimum energy spanning trees on a lattice. We performed numerical simulations on a 2D square lattice and find significant differences from other percolation models. Additionally, we find that the growing fracture network satisfies both Horton-Strahler and Tokunaga network statistics. As with other invasion percolation models, our model displays burst dynamics, in which the cluster extends rapidly into a connected region. We introduce an alternative definition of bursts to be a consecutive series of opened bonds whose strengths are all below a specified value. Using this definition of bursts, we find good agreement with a power-law frequency-area distribution. These results are generally consistent with the observed distribution of microseismicity observed during a high-volume frack. %U http://arxiv.org/abs/1405.2287v1