%0 Journal Article %T Wave-particle interactions with parallel whistler waves: nonlinear and time-dependent effects revealed by Particle-in-Cell simulations %A Enrico Camporeale %A Gaetano Zimbardo %J Physics %D 2014 %I arXiv %R 10.1063/1.4929853 %X We present a self-consistent Particle-in-Cell simulation of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earths radiation belt. By tracking PIC particles, and comparing with test-particle simulations we emphasize the importance of including nonlinear effects and time evolution in the modeling of wave-particle interactions, which are excluded in the resonant limit of quasi- linear theory routinely used in radiation belt studies. In particular we show that pitch angle diffusion is enhanced during the linear growth phase, and it rapidly saturates well before a single bounce period. This calls into question the widely used bounce average performed in most radiation belt diffusion calculations. Furthermore we discuss how the saturation is related to the fact that the domain in which the,particles pitch angle diffuse is bounded, and to the well-known problem of $90^\circ$ diffusion barrier diffusion barrier. %U http://arxiv.org/abs/1412.3229v2