%0 Journal Article %T A Comparative Study of Human Thermal Face Recognition Based on Haar Wavelet Transform and Local Binary Pattern %A Debotosh Bhattacharjee %A Ayan Seal %A Suranjan Ganguly %A Mita Nasipuri %A Dipak Kumar Basu %J Computational Intelligence and Neuroscience %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/261089 %X Thermal infrared (IR) images focus on changes of temperature distribution on facial muscles and blood vessels. These temperature changes can be regarded as texture features of images. A comparative study of face two recognition methods working in thermal spectrum is carried out in this paper. In the first approach, the training images and the test images are processed with Haar wavelet transform and the LL band and the average of LH/HL/HH bands subimages are created for each face image. Then a total confidence matrix is formed for each face image by taking a weighted sum of the corresponding pixel values of the LL band and average band. For LBP feature extraction, each of the face images in training and test datasets is divided into 161 numbers of subimages, each of size 8 ¡Á 8 pixels. For each such subimages, LBP features are extracted which are concatenated in manner. PCA is performed separately on the individual feature set for dimensionality reduction. Finally, two different classifiers namely multilayer feed forward neural network and minimum distance classifier are used to classify face images. The experiments have been performed on the database created at our own laboratory and Terravic Facial IR Database. 1. Introduction In the modern society, there is an increasing need to track and recognize persons automatically in various areas such as in the areas of surveillance, closed circuit television (CCTV) control, user authentication, human computer interface (HCI), daily attendance register, airport security checks, and immigration checks [1¨C3]. Such requirement for reliable personal identification in computerized access control has resulted in an increased interest in biometrics. The key element of biometric technology is its ability to identify a human being and enforce security. Nearly all-biometric systems work in the same manner. First, a person is registered into a database using a specified method. Information about a certain characteristic of the human is captured. This information is usually placed through an algorithm that turns the information into a code that the database stores. When the person needs to be identified, the system will take the information about the person again, translate this new information with the algorithm, and then compare the new code with the stored ones in the database to find out a possible match. Biometrics use physical characteristics or personal traits to identify a person. Physical feature is suitable for identity purpose and generally obtained from living human body. Commonly used physical features are %U http://www.hindawi.com/journals/cin/2012/261089/