%0 Journal Article %T Standardizing Type Ia Supernova Absolute Magnitudes Using Gaussian Process Data Regression %A A. G. Kim %A R. C. Thomas %A G. Aldering %A P. Antilogus %A C. Aragon %A S. Bailey %A C. Baltay %A S. Bongard %A C. Buton %A A. Canto %A F. Cellier-Holzem %A M. Childress %A N. Chotard %A Y. Copin %A H. K. Fakhouri %A E. Gangler %A J. Guy %A M. Kerschhaggl %A M. Kowalski %A J. Nordin %A P. Nugent %A K. Paech %A R. Pain %A E. P¨¦contal %A R. Pereira %A S. Perlmutter %A D. Rabinowitz %A M. Rigault %A K. Runge %A C. Saunders %A R. Scalzo %A G. Smadja %A C. Tao %A B. A. Weaver %A C. Wu %J Physics %D 2013 %I arXiv %R 10.1088/0004-637X/766/2/84 %X We present a novel class of models for Type Ia supernova time-evolving spectral energy distributions (SED) and absolute magnitudes: they are each modeled as stochastic functions described by Gaussian processes. The values of the SED and absolute magnitudes are defined through well-defined regression prescriptions, so that data directly inform the models. As a proof of concept, we implement a model for synthetic photometry built from the spectrophotometric time series from the Nearby Supernova Factory. Absolute magnitudes at peak $B$ brightness are calibrated to 0.13 mag in the $g$-band and to as low as 0.09 mag in the $z=0.25$ blueshifted $i$-band, where the dispersion includes contributions from measurement uncertainties and peculiar velocities. The methodology can be applied to spectrophotometric time series of supernovae that span a range of redshifts to simultaneously standardize supernovae together with fitting cosmological parameters. %U http://arxiv.org/abs/1302.2925v1