%0 Journal Article %T Jet and underlying event properties as a function of particle multiplicity in proton-proton collisions at sqrt(s) = 7 TeV %A CMS Collaboration %J Physics %D 2013 %I arXiv %R 10.1140/epjc/s10052-013-2674-5 %X Characteristics of multi-particle production in proton-proton collisions at sqrt(s) = 7 TeV are studied as a function of the charged-particle multiplicity, N[ch]. The produced particles are separated into two classes: those belonging to jets and those belonging to the underlying event. Charged particles are measured with pseudorapidity abs(eta) < 2.4 and transverse momentum pt > 0.25 GeV. Jets are reconstructed from charged-particles only and required to have pt > 5 GeV. The distributions of jet pt, average pt of charged particles belonging to the underlying event or to jets, jet rates, and jet shapes are presented as functions of N[ch] and compared to the predictions of the PYTHIA and HERWIG event generators. Predictions without multi-parton interactions fail completely to describe the N[ch]-dependence observed in the data. For increasing N[ch], PYTHIA systematically predicts higher jet rates and harder pt spectra than seen in the data, whereas HERWIG shows the opposite trends. At the highest multiplicity, the data-model agreement is worse for most observables, indicating the need for further tuning and/or new model ingredients. %U http://arxiv.org/abs/1310.4554v2