%0 Journal Article %T Fermionic Quasi-Particle Representations for Characters of ${(G^{(1)})_1 \times (G^{(1)})_1 £¿(G^{(1)})_2}$ %A R. Kedem %A T. R. Klassen %A B. M. McCoy %A E. Melzer %J Physics %D 1992 %I arXiv %R 10.1016/0370-2693(93)90292-P %X We present fermionic quasi-particle sum representations for some of the characters (or branching functions) of ~${(G^{(1)})_1 \times (G^{(1)})_1 \o (G^{(1)})_2}$ ~for all simply-laced Lie algebras $G$. For given $G$ the characters are written as the partition function of a set of rank~$G$ types of massless quasi-particles in certain charge sectors, with nontrivial lower bounds on the one-particle momenta. We discuss the non-uniqueness of the representations for the identity character of the critical Ising model, which arises in both the $A_1$ and $E_8$ cases. %U http://arxiv.org/abs/hep-th/9211102v2