%0 Journal Article %T The Presence of Anti-HLA Antibodies before and after Allogeneic Hematopoietic Stem Cells Transplantation from HLA-Mismatched Unrelated Donors %A Anna Koclega %A Miroslaw Markiewicz %A Urszula Siekiera %A Alicja Dobrowolska %A Mizia Sylwia %A Monika Dzierzak-Mietla %A Patrycja Zielinska %A Malgorzata Sobczyk Kruszelnicka %A Andrzej Lange %A Slawomira Kyrcz-Krzemien %J Bone Marrow Research %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/539825 %X Although anti-human leukocyte antigen antibodies (anti-HLA Abs) are important factors responsible for graft rejection in solid organ transplantation and play a role in post-transfusion complications, their role in allogeneic hematopoietic stem cell transplantation (allo-HSCT) has not been finally defined. Enormous polymorphism of HLA-genes, their immunogenicity and heterogeneity of antibodies, as well as the growing number of allo-HSCTs from partially HLA-mismatched donors, increase the probability that anti-HLA antibodies could be important factors responsible for the treatment outcomes. We have examined the incidence of anti-HLA antibodies in a group of 30 allo-HSCT recipients from HLA-mismatched unrelated donors. Anti-HLA Abs were identified in sera collected before and after allo-HSCT. We have used automated DynaChip assay utilizing microchips bearing purified class I and II HLA antigens for detection of anti-HLA Abs. We have detected anit-HLA antibodies against HLA-A, B, C, DR, DQ and DP, but no donor or recipient-specific anti-HLA Abs were detected in the studied group. The preliminary results indicate that anti-HLA antibodies are present before and after allo-HSCT in HLA-mismatched recipients. 1. Introduction Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment of both congenital and acquired disturbances of hematopoiesis, especially of hematological malignancies. The selection of the optimal donor is based on high-resolution HLA typing. The MHC (Major Histocompatibility Complex) contains more than 200 genes which are situated on the short arm of chromosome 6 at 6p21.3. It is divided into three main regions: HLA class I (containing HLA-A, B, and C genes), class II (containing HLA-DR, DQ, and DP genes), and class III region. The role of HLA molecules is to present peptides to T cells (both CD4 and CD8 T cells), enabling them to recognize and eliminate ˇ°foreignˇ± particles and also to prevent the recognition of ˇ°selfˇ± as foreign. HLA mismatches may occur at antigenic or allelic level; the first are characterized by amino acid substitutions in both peptide-binding and T-cell recognition regions, whereas the latter are characterized by amino-acid substitution in the peptide binding regions only [1]. HLA antigens are recognized by immunocompetent T cells, what may lead to graft failure, graft versus host disease (GVHD), and other posttransplant complications as well as to favorable graft versus leukemia (GVL) effect. HLA molecules bear multiple antigenic epitopes, many of which are the so-called ˇ°publicˇ± epitopes %U http://www.hindawi.com/journals/bmr/2012/539825/