%0 Journal Article %T Autologous Hematopoietic Stem Cell Transplantation for Multiple Myeloma without Cryopreservation %A Khalid Ahmed Al-Anazi %J Bone Marrow Research %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/917361 %X High-dose chemotherapy followed by autologous hematopoietic stem cell transplantation is considered the standard of care for multiple myeloma patients who are eligible for transplantation. The process of autografting comprises the following steps: control of the primary disease by using a certain induction therapeutic protocol, mobilization of stem cells, collection of mobilized stem cells by apheresis, cryopreservation of the apheresis product, administration of high-dose pretransplant conditioning therapy, and finally infusion of the cryopreserved stem cells after thawing. However, in cancer centers that treat patients with multiple myeloma and have transplantation capabilities but lack or are in the process of acquiring cryopreservation facilities, alternatively noncryopreserved autologous stem cell therapy has been performed with remarkable success as the pretransplant conditioning therapy is usually brief. 1. Introduction Multiple myeloma (MM) accounts for 1% of all cancers and about 10% of all hematologic malignancies [1]. It is characterized by neoplastic proliferation of a clone of plasma cells producing a monoclonal immunoglobulin and can present as a single lesion (plasmacytoma) or multiple lesions (MM). Clonal plasma cells proliferate in the bone marrow and can cause extensive lytic bony lesions, osteopenia, and pathological fractures [2]. MM is a heterogenous disease rather than a single disease entity, as some patients progress rapidly despite therapy, whilst others may not require active therapy for a number of years [2]. Once the diagnosis of MM is made, the patient undergoes staging evaluation in order to start an appropriate line of therapy. The international staging system (ISS) divides patients into 3 categories according to serum albumin and beta-2-microglobulin levels. Conventional cytogenetics, fluorescence in situ hybridization (FISH), and molecular studies help to stratify patients into standard-risk, high-risk, and ultra-high-risk groups to determine prognosis and to refine management of patients. Gene expression profiling and plasma cell labeling index can identify high-risk groups and select the most appropriate novel therapies to be used [1¨C6]. 2. Use of Novel Agents The availability of novel agents has expanded treatment options and has improved outcomes of myeloma patients. A number of phase III clinical trials have demonstrated the efficacy of novel agent combinations and their superiority to VAD (vincristine, doxorubicin, and dexamethasone) regimen [7, 8]. Some novel agents appear to be active in high-risk patients, for %U http://www.hindawi.com/journals/bmr/2012/917361/