%0 Journal Article %T Current Induced Order Parameter Dynamics: Microscopic Theory Applied to Co/Cu/Co spin valves %A P. M. Haney %A D. Waldron %A R. A. Duine %A A. S. Nunez %A H. Guo %A A. H. MacDonald %J Physics %D 2006 %I arXiv %R 10.1103/PhysRevB.76.024404 %X Transport currents can alter alter order parameter dynamics and change steady states in superconductors, in ferromagnets, and in hybrid systems. In this article we present a scheme for fully microscopic evaluation of order parameter dynamics that is intended for application to nanoscale systems. The approach relies on time-dependent mean-field-theory, on an adiabatic approximation, and on the use of non-equilibrium Greens function (NEGF) theory to calculate the influence of a bias voltage across a system on its steady-state density matrix. We apply this scheme to examine the spin-transfer torques which drive magnetization dynamics in Co/Cu/Co spin-valve structures. Our microscopic torques are peaked near Co/Cu interfaces, in agreement with most previous pictures, but suprisingly act mainly on Co transition metal $d$-orbitals rather than on $s$-orbitals as generally supposed. %U http://arxiv.org/abs/cond-mat/0611534v1