%0 Journal Article %T Sertraline May Improve Language Developmental Trajectory in Young Children with Fragile X Syndrome: A Retrospective Chart Review %A Tri Indah Winarni %A Weerasak Chonchaiya %A Evan Adams %A Jacky Au %A Yi Mu %A Susan M. Rivera %A Danh V. Nguyen %A Randi J. Hagerman %J Autism Research and Treatment %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/104317 %X Young children with fragile X syndrome (FXS) often experience anxiety, irritability, and hyperactivity related to sensory hyperarousal. However, there are no medication recommendations with documented efficacy for children under 5 years old of age with FXS. We examined data through a chart review for 45 children with FXS, 12¨C50 months old, using the Mullen Scales of Early Learning (MSEL) for baseline and longitudinal assessments. All children had clinical level of anxiety, language delays based on MSEL scores, and similar early learning composite (ELC) scores at their first visit to our clinic. Incidence of autism spectrum disorder (ASD) was similar in both groups. There were 11 children who were treated with sertraline, and these patients were retrospectively compared to 34 children who were not treated with sertraline by chart review. The baseline assessments were done at ages ranging from 18 to 44 months (mean 26.9, SD 7.99) and from 12 to 50 months (mean 29.94, SD 8.64) for treated and not treated groups, respectively. Mean rate of improvement in both expressive and receptive language development was significantly higher in the group who was treated with sertraline ( and , resp.). This data supports the need for a controlled trial of sertraline treatment in young children with FXS. 1. Introduction Fragile X syndrome (FXS) is a single gene disorder caused by mutation in the fragile X mental retardation 1 (FMR1) gene located at Xq27.3. The full mutation of CGG repeat expansion (>200 repeats) in the 5¡ä untranslated region (UTR) region leads to transcriptional silencing of the gene and a lack of fragile X mental retardation protein (FMRP) resulting in FXS [1]. FXS is the most common inherited form of intellectual impairment known, and it is characterized by a broad spectrum of cognitive, behavioral, and emotional impairment. The level of cognitive impairment ranges from borderline to severe intellectual disability (ID), and it correlates with the level of FMRP in blood [2, 3]. The full mutation allele frequency of FXS is about 1 in 4,000 in the general population [4, 5]. FMRP, an RNA binding, stabilizing, and transporter protein, is essential for synaptogenesis and the maturation and pruning processes of dendrite spines during development and throughout life [6¨C8]. FMRP is also a regulator of translation, typically through suppression, so the lack of FMRP leads to excessive synthesis of proteins [9] and synaptic dysfunction throughout the brain [10]. FMRP is functionally linked to perhaps hundreds of mRNAs [11], so that its absence disrupts the %U http://www.hindawi.com/journals/aurt/2012/104317/