%0 Journal Article %T Using Genetic Algorithms for Navigation Planning in Dynamic Environments %A Ferhat U£żan %A D. Turgay Alt£żlar %J Applied Computational Intelligence and Soft Computing %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/560184 %X Navigation planning can be considered as a combination of searching and executing the most convenient flight path from an initial waypoint to a destination waypoint. Generally the aim is to follow the flight path, which provides minimum fuel consumption for the air vehicle. For dynamic environments, constraints change dynamically during flight. This is a special case of dynamic path planning. As the main concern of this paper is flight planning, the conditions and objectives that are most probable to be used in navigation problem are considered. In this paper, the genetic algorithm solution of the dynamic flight planning problem is explained. The evolutionary dynamic navigation planning algorithm is developed for compensating the existing deficiencies of the other approaches. The existing fully dynamic algorithms process unit changes to topology one modification at a time, but when there are several such operations occurring in the environment simultaneously, the algorithms are quite inefficient. The proposed algorithm may respond to the concurrent constraint updates in a shorter time for dynamic environment. The most secure navigation of the air vehicle is planned and executed so that the fuel consumption is minimum. 1. Introduction Navigation planning requires producing a flight plan to describe a proposed aircraft flight. It involves two safety-critical aspects: minimum fuel consumption and compliance with air traffic control requirements. Navigation planning involves creating a flight plan to guide a point-like object from its initial position to a destination waypoint [1]. Along the way, there may be a set of regions to visit and a set of regions to avoid. Planners wish to reach the destination economically and by minimum risk of mid-air collision. Fuel consumption involves fuel flow rate estimations, so that the relation of fuel flow with air temperature, flight altitude, true airspeed, and gross weight can be defined with an accurate formula [2]. Safety regulations require aircraft to carry fuel beyond the minimum needed to fly from origin to destination, allowing for unforeseen circumstances or for diversion to another airport if the planned destination becomes unavailable. Furthermore, under the supervision of air traffic control, aircraft flying in controlled airspace must follow predetermined routes known as airways, even if such routes are not as economical as a more direct flight [3, 4]. The basis of the flight profile is the route that the aircraft is to fly from the departure airport to the destination airport. Flight planning function %U http://www.hindawi.com/journals/acisc/2012/560184/