%0 Journal Article %T The Role of Earthworms in Tropics with Emphasis on Indian Ecosystems %A Radha D. Kale %A Natchimuthu Karmegam %J Applied and Environmental Soil Science %D 2010 %I Hindawi Publishing Corporation %R 10.1155/2010/414356 %X The paper highlights the research carried out by different scientists in India on aspects of earthworm population dynamics and species diversity, associated with other soil fauna and microflora. It also deals with the importance of earthworm activity on physicochemical properties of soil with reference to India and other tropical countries. Stress is laid on the earthworm plant association and importance of the secretions of earthworms as plant growth stimulators. Moreover, the earthworm species reported and being utilized for vermicomposting in India are discussed, since vermicomposting is the ultimate technology which renders for the improvement of soil fertility status and plant growth. Earthworms serve as indicators of soil status such as the level of contamination of pollutants: agrochemicals, heavy metals, toxic substances, and industrial effluents; human-induced activities: land-management practices and forest degradation. In all these fields there is lacuna with respect to contributions from India when compared to the available information from other tropical countries. There is lot of scope in the field of research on earthworms to unravel the importance of these major soil macrofauna from holistic ecological studies to the molecular level. 1. Introduction Earthworms belonging to Phylum Annelida, Class Chaetopoda, and Order Oligochaeta occupy a unique position in animal kingdom. They are the first group of multicellular, eucoelomate invertebrates who have succeeded to inhabit terrestrial environment. They form major soil macrofauna. Their species richness, abundance, and distribution pattern reflect on edaphic and climatic factors of the geographical zone. They serve as ¡°bioindicators¡± to understand the physicochemical characteristics of their habitat. Their horizontal and vertical stratification and abundance contribute to pedogenesis and soil profile. Encouraging their establishment through no tillage or shallow ploughing and enriching soil with organic matter incorporation has resulted in improving soil fertility. This has been experimented for several decades at Rothamsted Research Station, U.K. The interaction of earthworms and other microflora and fauna has given much scope for understanding of soil community and its influence on above ground primary production. Distinctive habitat, food niches, and adaptive mechanisms of earthworms have opened up new fields for investigations on their role in organic waste management. One of the advantageous factors in this field is the use of earthworms to minimize the degradable organic matter and to %U http://www.hindawi.com/journals/aess/2010/414356/