%0 Journal Article %T Soil Nutrient Availability, Plant Nutrient Uptake, and Wild Blueberry (Vaccinium angustifolium Ait.) Yield in Response to N-Viro Biosolids and Irrigation Applications %A Aitazaz A. Farooque %A Farhat Abbas %A Qamar U. Zaman %A Ali Madani %A David C. Percival %A Muhammad Arshad %J Applied and Environmental Soil Science %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/638984 %X We compared the impact of surface broadcasted N-Viro biosolids and inorganic fertilizer (16.5% Ammonium sulphate, 34.5% Diammonium phosphate, 4.5% Potash, and 44.5%£¿s and/or clay filler) applications on soil properties and nutrients, leaf nutrient concentration, and the fruit yield of lowbush blueberry under irrigated and nonirrigated conditions during 2008-2009 at Debert, NS, Canada. Application rates of N-Viro biosolids were more than double of inorganic fertilizer applied at a recommended N rate of 32£¿kg£¿ha£¿1. The experimental treatments NI: N-Viro with irrigation, FI: inorganic fertilizer with irrigation, N: N-Viro without irrigation, and F: inorganic fertilizer without irrigation (control) were replicated four times under a randomized complete block design. The NI treatment had the highest OM (6.68%) followed by FI (6.32%), N (6.18%), and F (4.43%) treatments during the year 2008. Similar trends were observed during 2009 with the highest soil OM values (5.50%) for NI treatment. Supplemental irrigation resulted in a 21% increase in the ripe fruit yield. Nonsignificant effect of fertilizer treatments on most of the nutrient concentrations in soil and plant leaves, and on ripe fruits yield reflects that the performance of N-Viro was comparable with that of the inorganic fertilizer used in this study. 1. Introduction Local authorities both overseas and in Canada are continually searching for environmentally acceptable and economically viable means of sewage sludge disposal. The Halifax Regional Municipality in Nova Scotia, Canada, has entered into a partnership with the N-Viro company to treat its biosolids for producing N-Viro biosolids that have been registered as a fertilizer under the Canada Fertilizer Act. The United States Environmental Protection Agency promotes the recycling of sludge material on some crop lands since it is an excellent source of several plant nutrients. The use of N-Viro biosolids as a fertilizer on agricultural lands provides essential plant nutrients while improving the physical and chemical soil properties and enhancing agricultural yield [1, 2]. Nutrients contained in the processed biosolids are slowly released, as those from organic manures, and are stored for a longer time in the soil, thereby ensuring a positive residual effect on plant root development and growth leading to higher crop yields [3, 4]. Literature reports that the release of nitrogen (N) from impregnated waste paper (biosolids) was found to be slow and steady [5]. The N-enriched cow dung used in maize production gave yield comparative inorganic fertilizer %U http://www.hindawi.com/journals/aess/2012/638984/