%0 Journal Article %T An Initial Investigation into the Use of a Flux Chamber Technique to Measure Soil-Atmosphere Gas Exchanges from Application of Biosolids to UK Soils %A S. M. Donovan %A A. M. Skartsila %A M. K. Head %A N. Voulvoulis %J Applied and Environmental Soil Science %D 2011 %I Hindawi Publishing Corporation %R 10.1155/2011/957181 %X While a significant amount of work has been conducted to assess the concentration of pollutants in soils and waterways near land that has been amended with biosolids, a relatively small body of research investigating emissions to atmosphere is available in the literature. Some studies have indicated that while the CO2 emissions from soils decrease with fertiliser application, the CH4 and N2O emissions might be increased, offsetting the benefit. The objective of the research presented in this paper was to address this gap, by the use of a flux chamber technique to measure soil-atmosphere gas exchanges from the application of biosolids to land. This was done by applying three different types of biosolids to soils and measuring gases at the soil-atmosphere interface. The measurements were taken on areas with three different types of vegetation. The gases were collected using a flux chamber technique and analysed by gas chromatography. The results presented here are preliminary findings of an ongoing experiment. Insignificant variation appeared to occur between different areas of vegetation; however, small variations in gas concentrations were observed indicating a need for continued monitoring of soil-atmosphere gas exchanges to determine the long-term impacts on the atmosphere and the environment. 1. Introduction Modern intensive agricultural practices have depleted soils of many of the nutrients required for plant growth [1]. It would not be possible to continue to produce food at current rates without fertiliser addition. The most essential nutrient required is nitrogen, which can be synthetically manufactured. The uptake by plants of nitrogen in the most readily available form avoids losses to the atmosphere through the microbial processes of nitrification and denitrification [1, 2]. However, the fertilisers are most commonly produced by combining the hydrogen in natural gas with atmospheric N2 requiring significant energy input to break the strong bond of the N2, which accounts for approximately 94% of energy consumed by the fertiliser production industry [3]. The increasing cost of energy in combination with the depletion of natural gas resources [4] is causing the price of fertilisers to become prohibitively expensive. The second most essential soil nutrient is phosphorus. Although the P content of soils is not depleted, it is not present in a form that is readily available for uptake by plants, making the addition of fertilisers essential for food production. P fertilisers are most commonly derived from phosphate rock, a scarce resource with no %U http://www.hindawi.com/journals/aess/2011/957181/