%0 Journal Article
%T 不同学习速率下NMF盲源分离算法
Blind Source Separation Algorithms Based on Nonnegative Matrix Factorization Using Different Learning Rates
%A 毛翊君
%A 赵知劲
%A 尚俊娜
%J Hans Journal of Wireless Communications
%P 91-97
%@ 2163-3991
%D 2015
%I Hans Publishing
%R 10.12677/HJWC.2015.55013
%X
基于非负矩阵分解(NMF)的盲源分离算法采用乘性更新规则,但如何选择学习速率选择以及其对算法性能影响没有详细研究。对此,本文推导给出了选择不同学习速率时各种迭代更新公式,并对各种组合进行了大量计算机仿真实验,通过比较分析发现,有效的迭代更新公式的分母必须包含误差函数信息,分子分母的项数应尽可能平衡。
The iterative multipliable update formulas are used in blind source separation algorithms based on non-negative matrix factorization (NMF). However, the methods to select the learning rates and affect algorithms’ performance remain to be researched. This paper gives a derivation of different learning rates when selecting various iterative update formulas. A lot of computer simulations about these combinations are carried, and they show that a denominator of the effective iterative update formulas must contain information of the error function. In addition, its terms of denomi-nator and numerator should be balanced.
%K 非负矩阵分解,盲分离,学习速率,误差函数
Non-Negative Matrix Factorization (NMF)
%K Blind Source Separation (BSS)
%K Learning Rates
%K Error Function
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=16226