%0 Journal Article %T Relation between Two Operator Inequalities <img src="http://latex.codecogs.com/gif.latex?f(B^{\frac{1}{2}}AB^{\frac{1}{2}})\geq&space;B^{-1}" title="f(B^{\frac{1}{2}}AB^{\frac{1}{2}})\geq B^{-1}" /> and <img src="http://latex.codecogs.com/gif.latex?A^{-1}\geq&space;g(A^{\frac{1}{2}}BA^{\frac{1}{2}})" title="A^{-1}\geq g(A^{\frac{1}{2}}BA^{\frac{1}{2}})" /> %A Mohammad Ilyas %A Reyaz Ahmad %A Shadab Ilyas %J Advances in Pure Mathematics %P 93-99 %@ 2160-0384 %D 2015 %I Scientific Research Publishing %R 10.4236/apm.2015.52012 %X
We shall show relation between two operator inequalities and for positive, invertible operators A and B, where f and g are non-negative continuous invertible
functions on satisfying f(t)g(t)=t-1 .
%K Operator Inequality %K Orthoprojection %K Representing Function %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=54243