%0 Journal Article %T Numerical Simulations of Dynamic Behavior of Polyurea Toughened Steel Plates under Impact Loading %A Chien-Chung Chen %A Daniel G. Linzell %J Journal of Computational Engineering %D 2014 %R 10.1155/2014/416049 %X The objective of the work discussed herein is to develop a nonlinear 3D finite element model to simulate dynamic behavior of polyurea toughened steel plates under impact loading. Experimental and numerical work related to model development are presented. Material properties are incorporated into numerical models to account for strain-rate effects on the dynamic behavior of polyurea and steel. One bare steel plate and four polyurea toughened steel plates were tested under impact loading using a pendulum impact device. Displacement time-history data from experimental work was used to validate the numerical models. Details on material model construction, finite element model development, and model validation are presented and discussed. Results indicate that the developed numerical models can reasonably predict dynamic response of polyurea toughened steel plates under impact loading. 1. Introduction Extreme natural and man-made hazards have always posed threats to civil infrastructure. Typical natural threats include earthquakes and hurricanes and man-made hazards can include malicious events caused by explosions or vehicle collisions. As conventional structures designed primarily based on strength and serviceability criteria can, in some instances, be vulnerable to impulsive and impact loads, it was of interest to examine new structural systems and materials that might better protect important structural components against these loads. This paper summarizes portions of a study that investigated the effectiveness with which an innovative coating material helped improve steel structural component impact resistance. Polyurea is a coating material that has received research interest due to its effective energy absorption properties. Davidson et al. [1] utilized polyurea as a blast load retrofitting material for masonry wall systems in residential or low-rise office structures. Fatt Hoo et al. [2] investigated the performance of polyurea strengthened concrete masonry walls subjected to blast loading. Results suggested that polyurea coated concrete masonry walls could improve blast resistance and reduce fragmentation. Also, Porter et al. [3] indicated that polyurea can be used to increase blast resistance of timber-framed structures. Nevertheless, the performance of various substrate materials coated with polyurea, from brittle materials like the aforementioned concrete and masonry to more ductile materials like steel, may vary widely because of the inherent different material behavior between brittle and ductile materials, and, as a result, approaches for %U http://www.hindawi.com/journals/jcengi/2014/416049/