%0 Journal Article %T Sugar Mill Effluent Utilization in the Cultivation of Maize (Zea mays L.) in Two Seasons %A Vinod Kumar %J Journal of Waste Management %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/408509 %X The aim of present investigation is to study the effects of sugar mill effluent fertigation on soil properties and agronomical characteristics of Maize (Zea mays L. cv. NMH 589) in two seasons. Six treatments of sugar mill effluent, namely, 0% (control), 20%, 40%, 60%, 80%, and 100%, were used for the cultivation of Z. mays. Fertigation with different concentrations of sugar mill effluent resulted in significant () changes in EC, pH, OC, , , , , TKN, , , , , , , , and of the soil in both seasons. The maximum agronomic performance of Z. mays was noted with 40% concentration of sugar mill effluent. Biochemical components like crude proteins, crude fiber, and total carbohydrates were recorded highest with 40% concentration of sugar mill effluent in both seasons. The contamination factor (Cf) of various heavy metals was observed in order of for soil and for Z. mays in both seasons after fertigation with sugar mill effluent. It appears that sugar mill effluent can be used as a biofertigant after appropriate dilution to improve the yield. 1. Introduction In many agroindustrial processes, some by-products may be utilized as useful products [1, 2]. In India, the sugar industry is one of the greatest industries, based on sugar cane. Presently India has nearly 650 sugar mills that produce about 15 million tons of sugar and 13 million tons of molasses annually [3, 4]. The high production of sugar generates high quantities of the sugar industry wastes such as effluent, filter mud cake, vinasse, molasses, bagasse, and bagasse ash [5]. A few years ago, these by-products were considered as a waste and were often disposed of causing environmental problems such as aquatic and terrestrial pollution [6]. Recently, it has been recognized that such by-products should be considered as useful materials [7]. These by-products are of great agricultural interest because of their high organic matter, N and K contents, and probably other elements [3, 8, 9]. Therefore, some of these sugar industry by-products may represent an important source of nutrients and thereby could be used as a substitute for chemical and organic fertilizers [2, 8, 10, 11]. Use of wastewater in agricultural fields may be a viable method of disposal and would sustain agriculture in nonirrigated areas where the availability of fresh water is scarce [12, 13]. It reduces fertilizer and irrigation water cost as it is available without paying any cost and rich in various plant nutrients [12]. Although, metals like Cu, Fe, Ni, and Zn and other trace elements are important for proper functioning of biological %U http://www.hindawi.com/journals/jwm/2014/408509/