%0 Journal Article %T Plant-Mediated Green Synthesis of Iron Nanoparticles %A Mihir Herlekar %A Siddhivinayak Barve %A Rakesh Kumar %J Journal of Nanoparticles %D 2014 %I Hindawi Publishing Corporation %R 10.1155/2014/140614 %X In the recent years, nanotechnology has emerged as a state-of-the-art and cutting edge technology with multifarious applications in a wide array of fields. It is a very broad area comprising of nanomaterials, nanotools, and nanodevices. Amongst nanomaterials, majority of the research has mainly focused on nanoparticles as they can be easily prepared and manipulated. Physical and chemical methods are conventionally used for the synthesis of nanoparticles; however, due to several limitations of these methods, research focus has recently shifted towards the development of clean and eco-friendly synthesis protocols. Magnetic nanoparticles constitute an important class of inorganic nanoparticles, which find applications in different areas by virtue of their several unique properties. Nevertheless, in comparison with biological synthesis protocols for noble metal nanoparticles, limited study has been carried out with respect to biological synthesis of magnetic nanoparticles. This review focuses on various studies outlining the novel routes for biosynthesis of these nanoparticles by plant resources along with outlining the future scope of work in this area. 1. Introduction Nanotechnology can be defined as the manipulation of matter through certain chemical and/or physical processes to create materials with specific properties, which can be used in particular applications [1]. A nanoparticle can be defined as a microscopic particle that has at least one dimension less than 100 nanometers in size [2]. Unlike bulk materials, they have unique optical, thermal, electrical, chemical, and physical properties [3] and, hence, they find a variety of applications in the areas of medicine, chemistry, environment, energy, agriculture, information, and communication, heavy industry, and consumer goods [4]. Conventional nanoparticle synthesis methods like attrition and pyrolysis have drawbacks such as defective surface formation, low production rate, high cost of manufacturing, and large energy requirement [2]. Chemical synthesis methods (e.g., chemical reduction, sol gel technique, etc.) involve the usage of toxic chemicals, formation of hazardous byproducts, and contamination from precursor chemicals [2]. Hence, there is a growing need to develop clean, nontoxic, and environment-friendly procedures for nanoparticle synthesis. Some of the distinct advantages that biological synthesis protocols have over the conventionally used physical and chemical methods are(a)clean and eco-friendly method, as toxic chemicals are not used [5];(b)the active biological component like enzyme %U http://www.hindawi.com/journals/jnp/2014/140614/