%0 Journal Article %T Thermal Analysis of ZPPR High Pu Content Stored Fuel %A Charles W. Solbrig %A Chad L. Pope %A Jason P. Andrus %J International Journal of Nuclear Energy %D 2014 %R 10.1155/2014/402351 %X The Zero Power Physics Reactor (ZPPR) operated from April 18, 1969, until 1990. ZPPR operated at low power for testing nuclear reactor designs. This paper examines the temperature of Pu content ZPPR fuel while it is in storage. Heat is generated in the fuel due to Pu and Am decay and is a concern for possible cladding damage. Damage to the cladding could lead to fuel hydriding and oxidizing. A series of computer simulations were made to determine the range of temperatures potentially occuring in the ZPPR fuel. The maximum calculated fuel temperature is 292¡ãC (558¡ãF). Conservative assumptions in the model intentionally overestimate temperatures. The stored fuel temperatures are dependent on the distribution of fuel in the surrounding storage compartments, the heat generation rate of the fuel, and the orientation of fuel. Direct fuel temperatures could not be measured but storage bin doors, storage sleeve doors, and storage canister temperatures were measured. Comparison of these three temperatures to the calculations indicates that the temperatures calculated with conservative assumptions are, as expected, higher than the actual temperatures. The maximum calculated fuel temperature with the most conservative assumptions is significantly below the fuel failure criterion of 600¡ãC (1,112¡ãF). 1. Introduction ZPPR (Zero Power Physics Reactor) was the largest of the split-table fast reactor critical facilities. ZPPR was operated as a criticality facility from April 18, 1969, until being decommissioned in 1990. It was used to obtain a large amount of very detailed data on a variety of full-sized reactor configurations including large, commercial-sized fast reactors with powers of up to 1200£¿MW (electric). The purpose was to construct assemblies that closely resembled various fast reactor designs and then use the experimental results to validate and refine the data and methods used to design large fast reactors. There were 21 major assemblies, most of which had several major variants (e.g., beginning of cycle, middle of cycle, end of cycle, various control rod positions, etc.). The experiment campaigns included several large plutonium reactors, engineering mockups for both major design concepts for the clinch river breeder reactor designs, larger fast reactor designs as part of the JUPITER collaboration with Japan, the SP-100 space reactor, and assemblies supporting the integral fast reactor design [1]. The ZPPR critical assembly is put together from rectangular building blocks of fuel, coolant, and structural materials inserted into drawers. Figure 1 shows a %U http://www.hindawi.com/journals/ijne/2014/402351/