%0 Journal Article %T Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process %A Godfrey C. Onwubolu %A Farzad Rayegani %J International Journal of Manufacturing Engineering %D 2014 %R 10.1155/2014/598531 %X While fused deposition modelling (FDM) is one of the most used additive manufacturing (AM) techniques today due to its ability to manufacture very complex geometries, the major research issues have been to balance ability to produce aesthetically appealing looking products with functionality. In this study, five important process parameters such as layer thickness, part orientation, raster angle, raster width, and air gap have been considered to study their effects on tensile strength of test specimen, using design of experiment (DOE). Using group method of data handling (GMDH), mathematical models relating the response with the process parameters have been developed. Using differential evolution (DE), optimal process parameters have been found to achieve good strength simultaneously for the response. The optimization of the mathematical model realized results in maximized tensile strength. Consequently, the additive manufacturing part produced is improved by optimizing the process parameters. The predicted models obtained show good correlation with the measured values and can be used to generalize prediction for process conditions outside the current study. Results obtained are very promising and hence the approach presented in this paper has practical applications for design and manufacture of parts using additive manufacturing technologies. 1. Introduction Stratasys Inc. developed the fused deposition modeling (FDM) system which is one such layered manufacturing technology that produces parts with complex geometries by the layering of extruded materials, such as acrylonitrile butadiene styrene (ABS) thermoplastic [1, 2] as shown in Figure 1. In the FDM process, the build material is initially in the raw form of a flexible filament. The feedstock filament is then partially melted and extruded though a heated nozzle within a temperature controlled environment for building of the part. The material is extruded in a thin layer onto the previously built model layer on the build platform in the form of a prescribed two-dimensional (-) layer pattern. The deposited material cools, solidifies, and bonds with adjoining material. After an entire layer is deposited, the build platform moves downward along the -axis by an increment equal to the filament height (layer thickness) and the next layer is deposited on top of it. The platen or table on which the build sheet is placed lies on the - plane. Figure 1: FDM process. The properties of built parts depend on settings of various process parameters fixed at the time of fabrication. Additive manufacturing (AM) is a %U http://www.hindawi.com/journals/ijme/2014/598531/