%0 Journal Article %T Quadratic Prediction Models for the Performance Comparison of a Marine Engine Fuelled with Biodiesels B5 and B20 %A Chedthawut Poompipatpong %J International Journal of Engineering Mathematics %D 2014 %R 10.1155/2014/104989 %X According to Thailand¡¯s renewable energy development plan, biodiesel is one of the interesting alternative energies. In this research, biodiesels B5 and B20 are tested in a marine engine. The experimental results are then compared by using three different techniques including (1) the conventional technique, (2) average of the point-to-point comparisons, and (3) a comparison by using quadratic prediction models. This research aims to present the procedures of these techniques in-depth. The results show that the comparison by using quadratic prediction models can accurately predict ample amounts of results and make the comparison more logical. The results are compatible with those of the conventional technique, while the average of the point-to-point comparisons shows diverse results. These results are also explained on the fuel property basis, confirming that the quadratic prediction model and the conventional technique are practical, but the average of the point-to-point comparison technique presents an inaccurate result. The benefit of this research shows that the quadratic prediction model is more flexible for future science and engineering experimental design, thus reducing cost and time usage. The details of the calculation, results, and discussion are presented in the paper. 1. Introduction Alternative energy is one of the most interesting issues in the current situation. Biodiesel, diesohol, and pyrolysis oil have been improved and are replacing the usage of conventional automotive diesel fuel because some of them show ecological benefits and some economic benefits. An important topic of the investigation of alternative fuels is the differences of engine performance and emission concentrations [1, 2]. The experimental results of conventional fuel are the reference values. Then, the results of alternative fuels are compared to the reference values. The literature generally reports these differences in units of percentage for ease of understanding [3, 4]. For example, in order to compare engine performance when operated with two different fuels, the output performances over the whole test condition of each fuel are averaged and then these values are compared. This process is done by research [5, 6] and is called the ¡°conventional technique¡± in this research. This conventional comparison technique is straightforward and acceptable. However, the weak point is that the number of experimentations is limited in many scientific and engineering researches due to the cost and time consumption. Hence, this technique works only on experimental results and it %U http://www.hindawi.com/journals/ijem/2014/104989/