%0 Journal Article %T Preparation and Properties of 3D Chitosan Microtubes %A Natalia O. Gegel %A Anna B. Shipovskaya %A Luba S. Vdovykh %A Tatiana S. Babicheva %J Journal of Soft Matter %D 2014 %R 10.1155/2014/863096 %X The preparation of 3D chitosan microtubes from polymer solutions in citric and lactic acids by the wet and dry molding methods is described. The mechanism of formation of the insoluble polymeric layer constructing the walls of these microtubes is characterized. The microtubes obtained from chitosan solutions in citric acid are found to have a fragile porous inner layer. For those obtained from chitosan solutions in lactic acid the morphology, elastic-deformation properties, physicomechanical properties, and biocompatibility were assessed. These samples have smooth outer and inner surfaces with no visible defects and high values of elongation at break. The strength of the microtubes obtained by the dry method is much higher than in the case of the wet one. A high adhesion and high proliferative activity of the epithelial-like MA-104 cellular culture on the surface of our microtubular substrates in model in vitro experiments were revealed. Prospects of using chitosan microtubes as vascular prostheses are suggested. 1. Introduction Now, commercial vascular prostheses made of synthetic nonbiodegradable polymers, such as polytetrafluoroethylene and polyethylene terephthalate [1, 2], or made of biological tissues, for example, animal xenopericard [3], are commonly used to replace vascular defects. However, these prostheses are far from ideal and have a number of disadvantages; in particular, they do not biodegrade in a natural metabolic route and, hence, cannot be used for short-term stay in the body. On the contrary, the use of prostheses made of biodegradable polymers would enable one to avoid re-remodeling of vessels, which would be especially important in the case of prostheses for children whose bodies undergo physiological maturation. For example, prostheses made of biodegradable polymers eventually grow their own connective tissue and human endothelial and, concurrently, biodegrade by natural metabolism and, consequently, are excreted from the body. As a result, a new living organ, a vessel, is formed and grows with the patient. When prostheses used are made of nonbiodegradable polymers, no vessel growth with the patient¡¯s maturation occurs. Over time, therefore, such an implant must be replaced by a larger vascular prosthesis, which entails a new surgery. A successful surgery carried out in the Russian Federation of implantation of a vascular prosthesis made of a biodegradable material (obtained from Euroderm GmbH) to a 12-year-old child with a congenital heart disease is reported in [4]. Full biodegradation of the polymer matrix of the prosthesis and %U http://www.hindawi.com/journals/jsmat/2014/863096/