%0 Journal Article %T Genes Acting on Transcriptional Control during Abiotic Stress Responses %A Glacy Jaqueline da Silva %A Antonio Costa de Oliveira %J Advances in Agriculture %D 2014 %R 10.1155/2014/587070 %X Abiotic stresses are the major cause of yield loss in crops around the world. Greater genetic gains are possible by combining the classical genetic improvement with advanced molecular biology techniques. The understanding of mechanisms triggered by plants to meet conditions of stress is of fundamental importance for the elucidation of these processes. Current genetically modified crops help to mitigate the effects of these stresses, increasing genetic gains in order to supply the agricultural market and the demand for better quality food throughout the world. To obtain safe genetic modified organisms for planting and consumption, a thorough grasp of the routes and genes that act in response to these stresses is necessary. This work was developed in order to collect important information about essential TF gene families for transcriptional control under abiotic stress responses. 1. Introduction Plant breeding is ¡°the art and science of changing the characteristics of the plant in order to produce desired characteristics¡± and has been successfully practiced since of the beginning of civilization [1, 2]. Currently, their priorities and focus are the increase of yield in the same area. With population growth, the demand for food is increasing. However, large and small crop yields oscillate annually, because of several abiotic stresses, causing the increase in world food prices and food deficit. In some developmental stage, a stress or a combination of abiotic stresses can cause irreversible damage to plants. In rice, for example, cold can be drastically harmful during grain filling, depending on the temperature and time of exposure [3]. Also, water restriction at flowering can significantly reduce grain production in wheat cultivars [4]. Salinity, at higher concentrations, can inhibit germination and reduce the production of biomass, whereas low soil pH can lead to accumulation and mineral imbalance, all greatly affecting yield [5]. Abiotic stresses lead to a series of morphological and physiological, biochemical, and molecular changes that dramatically affect plant productivity [6]. In field conditions, a stress is always associated with other stress. For example, aluminum toxicity is always associated with other mineral imbalance [7, 8] and drought in most cases is associated with heat or salinity [9]. When plants receive any sign of stress, signaling is activated in the membrane, which will awake different intermediate stress genes. These genes could be members of the MAP Kinase cascade, or calcium-dependent, which has the function to activate %U http://www.hindawi.com/journals/aag/2014/587070/