%0 Journal Article %T Curvature Motion on Dual Hyperbolic Unit Sphere H<sup>2</sup><sub style="margin-left:-8px;">0</sub> %A Ziya Yapar %A Yasemin Sa£¿£¿ro£¿lu %J Journal of Applied Mathematics and Physics %P 828-836 %@ 2327-4379 %D 2014 %I Scientific Research Publishing %R 10.4236/jamp.2014.28092 %X

In this paper, we define dual curvature motion on the dual hyperbolic unit sphere H<sup>2</sup><sub style=\"margin-left:-8px;\">0</sub> in the dual Lorentzian space D<sup>3</sup><sub style=\"margin-left:-8px;\">1</sub> with dual signature (+,+-) . We carry the obtained results to the Lorentzian line space R<sup>3</sup><sub style=\"margin-left:-8px;\">1</sub> by means of Study mapping. Then we make an analysis of the orbits during the dual hyperbolic spherical curvature motion. Finally, we find some line congruences, the family of ruled surfaces and ruled surfaces in R<sup>3</sup><sub style=\"margin-left:-8px;\">1</sub>.


%K Dual Curvature Motion %K Dual Lorentzian Space %K Study Mapping %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=47947